Projective modules over some polynomial rings
نویسندگان
چکیده
منابع مشابه
Modules over Differential Polynomial Rings
This note announces a number of results on the structure of differential modules over differential rings, where differential ring means a ring with a family of derivations and differential module means a module having a family of operators compatible with the derivations of the ring. To fix notation, throughout the paper we let A denote an associative ring, M = AM an 4-module, k the correspondi...
متن کاملOn Projective Modules over Semi-hereditary Rings
This theorem, already known for finitely generated projective modules[l, I, Proposition 6.1], has been recently proved for arbitrary projective modules over commutative semi-hereditary rings by I. Kaplansky [2], who raised the problem of extending it to the noncommutative case. We recall two results due to Kaplansky: Any projective module (over an arbitrary ring) is a direct sum of countably ge...
متن کاملGray Images of Constacyclic Codes over some Polynomial Residue Rings
Let be the quotient ring where is the finite field of size and is a positive integer. A Gray map of length over is a special map from to ( . The Gray map is said to be a ( )-Gray map if the image of any -constacyclic code over is a -constacyclic code over the field . In this paper we investigate the existence of ( )-Gray maps over . In this direction, we find an equivalent ...
متن کاملCodes as Modules over Skew Polynomial Rings
In previous works we considered codes defined as ideals of quotients of non commutative polynomial rings, so called Ore rings of automorphism type. In this paper we consider codes defined as modules over non commutative polynomial rings, removing therefore some of the constraints on the length of the codes defined as ideals. The notion of BCH codes can be extended to this new approach and the c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 1979
ISSN: 0021-8693
DOI: 10.1016/0021-8693(79)90153-4